An Alternative Compressed Storage Format for Sparse Matrices

نویسندگان

  • Anand Ekambaram
  • Eurípides Montagne
چکیده

The handling of the sparse matrix vector product(SMVP) is a common kernel in many scientific applications. This kernel is an irregular problem, which has led to the development of several compressed storage formats such as CRS, CCS, and JDS among others. We propose an alternative storage format, the Transpose Jagged Diagonal Storage(TJDS), which is inspired from the Jagged Diagonal Storage format and makes no assumptions about the sparsity pattern of the matrix. We present a selection of sparse matrices and compare the storage requirements needed using JDS and TJDS formats, and we show that the TDJS format needs less storage space than the JDS format because the permutation array is not required. Another advantage of the proposed format is that although TJDS also suffers the drawback of indirect addressing, it does not need the permutation step after the computation of the SMVP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Multirow Storage Format for Sparse Matrices on Graphics Processing Units

A new format for storing sparse matrices is proposed for efficient sparse matrix-vector (SpMV) product calculation on modern graphics processing units (GPUs). This format extends the standard compressed row storage (CRS) format and can be quickly converted to and from it. Computational performance of two SpMV kernels for the new format is determined for over 130 sparse matrices on Fermi-class a...

متن کامل

A Hilbert-order multiplication scheme for unstructured sparse matrices

We investigate a new storage format for unstructured sparse matrices, based on the space filling Hilbert curve. Numerical tests with matrix-vector multiplication show the potential of the fractal storage format (FS) in comparison to the traditional compressed row storage format (CRS). The FS format outperforms the CRS format by up to 50% for matrix-vector multiplications with multiple right han...

متن کامل

Data Structures and Algorithms for Distributed Sparse Matrix Operations

We propose extensions of the classical row compressed storage format for sparse matrices. The extensions are designed to accomodate distributed storage of the matrix. We outline an implementation of the matrix-vector product using this distributed storage format, and give algorithms for building and using the communication structure between processors.

متن کامل

Compressed Multiple-Row Storage Format

A new format for storing sparse matrices is proposed for efficient sparse matrix-vector (SpMV) product calculation on modern throughput-oriented computer architectures. This format extends the standard compressed row storage (CRS) format and is easily convertible to and from it without any memory overhead. Computational performance of an SpMV kernel for the new format is determined for over 140...

متن کامل

A Hierarchical Sparse Matrix Storage Format for Vector Processors

We describe and evaluate a Hierarchical Sparse Matrix (HiSM) storage format designed to be a unified format for sparse matrix applications on vector processors. The advantages that the format offers are low storage requirements, a flexible structure for element manipulations and allowing for efficient operations. To take full advantage of the format we also propose a vector architecture extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003